iOS多线程:『GCD』详尽总结

转自https://www.jianshu.com/p/2d57c72016c6

本文用来介绍 iOS 多线程中 GCD 的相关知识以及使用方法。这大概是史上最详细、清晰的关于 GCD 的详细讲解+总结的文章了。通过本文,您将了解到:

  1. GCD 简介
  2. GCD 任务和队列
  3. GCD 的使用步骤
  4. GCD 的基本使用(6种不同组合区别)
  5. GCD 线程间的通信
  6. GCD 的其他方法(栅栏方法:dispatch_barrier_async、延时执行方法:dispatch_after、一次性代码(只执行一次):dispatch_once、快速迭代方法:dispatch_apply、队列组:dispatch_group、信号量:dispatch_semaphore)

1. GCD 简介

什么是 GCD 呢?我们先来看看百度百科的解释简单了解下概念

引自百度百科 Grand Central Dispatch(GCD) 是 Apple 开发的一个多核编程的较新的解决方法。它主要用于优化应用程序以支持多核处理器以及其他对称多处理系统。它是一个在线程池模式的基础上执行的并发任务。在 Mac OS X 10.6 雪豹中首次推出,也可在 iOS 4 及以上版本使用。

为什么要用 GCD 呢?

因为 GCD 有很多好处啊,具体如下:

既然 GCD 有这么多的好处,那么下面我们就来系统的学习一下 GCD 的使用方法。

2. GCD 任务和队列

学习 GCD 之前,先来了解 GCD 中两个核心概念:任务和队列。

任务:就是执行操作的意思,换句话说就是你在线程中执行的那段代码。在 GCD 中是放在 block 中的。执行任务有两种方式:同步执行(sync)和异步执行(async)。两者的主要区别是:是否等待队列的任务执行结束,以及是否具备开启新线程的能力。

举个简单例子:你要打电话给小明和小白。 同步执行就是,你打电话给小明的时候,不能同时打给小白,等到给小明打完了,才能打给小白(等待任务执行结束)。而且只能用当前的电话(不具备开启新线程的能力)。 而异步执行就是,你打电话给小明的时候,不等和小明通话结束,还能直接给小白打电话,不用等着和小明通话结束再打(不用等待任务执行结束)。除了当前电话,你还可以使用其他所能使用的电话(具备开启新线程的能力)。

注意:异步执行(async)虽然具有开启新线程的能力,但是并不一定开启新线程。这跟任务所指定的队列类型有关(下面会讲)。

队列(Dispatch Queue):这里的队列指执行任务的等待队列,即用来存放任务的队列。队列是一种特殊的线性表,采用 FIFO(先进先出)的原则,即新任务总是被插入到队列的末尾,而读取任务的时候总是从队列的头部开始读取。每读取一个任务,则从队列中释放一个任务。队列的结构可参考下图:

在 GCD 中有两种队列:串行队列并发队列。两者都符合 FIFO(先进先出)的原则。两者的主要区别是:执行顺序不同,以及开启线程数不同

3. GCD 的使用步骤

GCD 的使用步骤其实很简单,只有两步。

  1. 创建一个队列(串行队列或并发队列)
  2. 将任务追加到任务的等待队列中,然后系统就会根据任务类型执行任务(同步执行或异步执行)

下边来看看队列的创建方法/获取方法,以及任务的创建方法。

3.1 队列的创建方法/获取方法

3.2 任务的创建方法

GCD 提供了同步执行任务的创建方法dispatch_sync和异步执行任务创建方法dispatch_async

// 同步执行任务创建方法
dispatch_sync(queue, ^{
    // 这里放同步执行任务代码
});
// 异步执行任务创建方法
dispatch_async(queue, ^{
    // 这里放异步执行任务代码
}); 虽然使用 GCD 只需两步,但是既然我们有两种队列(串行队列/并发队列),两种任务执行方式(同步执行/异步执行),那么我们就有了四种不同的组合方式。这四种不同的组合方式是:
  1. 同步执行 + 并发队列
  2. 异步执行 + 并发队列
  3. 同步执行 + 串行队列
  4. 异步执行 + 串行队列

实际上,刚才还说了两种特殊队列:全局并发队列、主队列。全局并发队列可以作为普通并发队列来使用。但是主队列因为有点特殊,所以我们就又多了两种组合方式。这样就有六种不同的组合方式了。

5.同步执行 + 主队列

6.异步执行 + 主队列

那么这几种不同组合方式各有什么区别呢,这里为了方便,先上结果,再来讲解。你可以直接查看表格结果,然后跳过 4.GCD的基本使用

4. GCD 的基本使用

先来讲讲并发队列的两种执行方式。

4.1 同步执行 + 并发队列

输出结果: 2018-02-23 20:34:55.095932+0800 YSC-GCD-demo[19892:4996930] currentThread—<NSThread: 0x60400006bbc0>{number = 1, name = main} 2018-02-23 20:34:55.096086+0800 YSC-GCD-demo[19892:4996930] syncConcurrent—begin 2018-02-23 20:34:57.097589+0800 YSC-GCD-demo[19892:4996930] 1—<NSThread: 0x60400006bbc0>{number = 1, name = main} 2018-02-23 20:34:59.099100+0800 YSC-GCD-demo[19892:4996930] 1—<NSThread: 0x60400006bbc0>{number = 1, name = main} 2018-02-23 20:35:01.099843+0800 YSC-GCD-demo[19892:4996930] 2—<NSThread: 0x60400006bbc0>{number = 1, name = main} 2018-02-23 20:35:03.101171+0800 YSC-GCD-demo[19892:4996930] 2—<NSThread: 0x60400006bbc0>{number = 1, name = main} 2018-02-23 20:35:05.101750+0800 YSC-GCD-demo[19892:4996930] 3—<NSThread: 0x60400006bbc0>{number = 1, name = main} 2018-02-23 20:35:07.102414+0800 YSC-GCD-demo[19892:4996930] 3—<NSThread: 0x60400006bbc0>{number = 1, name = main} 2018-02-23 20:35:07.102575+0800 YSC-GCD-demo[19892:4996930] syncConcurrent—end

同步执行 + 并发队列中可看到:

4.2 异步执行 + 并发队列

输出结果: 2018-02-23 20:36:41.769269+0800 YSC-GCD-demo[19929:5005237] currentThread—<NSThread: 0x604000062d80>{number = 1, name = main} 2018-02-23 20:36:41.769496+0800 YSC-GCD-demo[19929:5005237] asyncConcurrent—begin 2018-02-23 20:36:41.769725+0800 YSC-GCD-demo[19929:5005237] asyncConcurrent—end 2018-02-23 20:36:43.774442+0800 YSC-GCD-demo[19929:5005566] 2—<NSThread: 0x604000266f00>{number = 5, name = (null)} 2018-02-23 20:36:43.774440+0800 YSC-GCD-demo[19929:5005567] 3—<NSThread: 0x60000026f200>{number = 4, name = (null)} 2018-02-23 20:36:43.774440+0800 YSC-GCD-demo[19929:5005565] 1—<NSThread: 0x600000264800>{number = 3, name = (null)} 2018-02-23 20:36:45.779286+0800 YSC-GCD-demo[19929:5005567] 3—<NSThread: 0x60000026f200>{number = 4, name = (null)} 2018-02-23 20:36:45.779302+0800 YSC-GCD-demo[19929:5005565] 1—<NSThread: 0x600000264800>{number = 3, name = (null)} 2018-02-23 20:36:45.779286+0800 YSC-GCD-demo[19929:5005566] 2—<NSThread: 0x604000266f00>{number = 5, name = (null)}

异步执行 + 并发队列中可以看出:

接下来再来讲讲串行队列的两种执行方式。

4.3 同步执行 + 串行队列

输出结果为: 2018-02-23 20:39:37.876811+0800 YSC-GCD-demo[19975:5017162] currentThread—<NSThread: 0x604000079400>{number = 1, name = main} 2018-02-23 20:39:37.876998+0800 YSC-GCD-demo[19975:5017162] syncSerial—begin 2018-02-23 20:39:39.878316+0800 YSC-GCD-demo[19975:5017162] 1—<NSThread: 0x604000079400>{number = 1, name = main} 2018-02-23 20:39:41.879829+0800 YSC-GCD-demo[19975:5017162] 1—<NSThread: 0x604000079400>{number = 1, name = main} 2018-02-23 20:39:43.880660+0800 YSC-GCD-demo[19975:5017162] 2—<NSThread: 0x604000079400>{number = 1, name = main} 2018-02-23 20:39:45.881265+0800 YSC-GCD-demo[19975:5017162] 2—<NSThread: 0x604000079400>{number = 1, name = main} 2018-02-23 20:39:47.882257+0800 YSC-GCD-demo[19975:5017162] 3—<NSThread: 0x604000079400>{number = 1, name = main} 2018-02-23 20:39:49.883008+0800 YSC-GCD-demo[19975:5017162] 3—<NSThread: 0x604000079400>{number = 1, name = main} 2018-02-23 20:39:49.883253+0800 YSC-GCD-demo[19975:5017162] syncSerial—end

在同步执行 + 串行队列可以看到:

4.4 异步执行 + 串行队列

输出结果为: 2018-02-23 20:41:17.029999+0800 YSC-GCD-demo[20008:5024757] currentThread—<NSThread: 0x604000070440>{number = 1, name = main} 2018-02-23 20:41:17.030212+0800 YSC-GCD-demo[20008:5024757] asyncSerial—begin 2018-02-23 20:41:17.030364+0800 YSC-GCD-demo[20008:5024757] asyncSerial—end 2018-02-23 20:41:19.035379+0800 YSC-GCD-demo[20008:5024950] 1—<NSThread: 0x60000026e100>{number = 3, name = (null)} 2018-02-23 20:41:21.037140+0800 YSC-GCD-demo[20008:5024950] 1—<NSThread: 0x60000026e100>{number = 3, name = (null)} 2018-02-23 20:41:23.042220+0800 YSC-GCD-demo[20008:5024950] 2—<NSThread: 0x60000026e100>{number = 3, name = (null)} 2018-02-23 20:41:25.042971+0800 YSC-GCD-demo[20008:5024950] 2—<NSThread: 0x60000026e100>{number = 3, name = (null)} 2018-02-23 20:41:27.047690+0800 YSC-GCD-demo[20008:5024950] 3—<NSThread: 0x60000026e100>{number = 3, name = (null)} 2018-02-23 20:41:29.052327+0800 YSC-GCD-demo[20008:5024950] 3—<NSThread: 0x60000026e100>{number = 3, name = (null)}

异步执行 + 串行队列可以看到:

下边讲讲刚才我们提到过的特殊队列:主队列

我们再来看看主队列的两种组合方式。

4.5 同步执行 + 主队列

同步执行 + 主队列在不同线程中调用结果也是不一样,在主线程中调用会出现死锁,而在其他线程中则不会。

4.5.1 在主线程中调用同步执行 + 主队列

输出结果 2018-02-23 20:42:36.842892+0800 YSC-GCD-demo[20041:5030982] currentThread—<NSThread: 0x600000078a00>{number = 1, name = main} 2018-02-23 20:42:36.843050+0800 YSC-GCD-demo[20041:5030982] syncMain—begin (lldb)

在同步执行 + 主队列可以惊奇的发现:

这是因为我们在主线程中执行syncMain方法,相当于把syncMain任务放到了主线程的队列中。而同步执行会等待当前队列中的任务执行完毕,才会接着执行。那么当我们把任务1追加到主队列中,任务1就在等待主线程处理完syncMain任务。而syncMain任务需要等待任务1执行完毕,才能接着执行。

那么,现在的情况就是syncMain任务和任务1都在等对方执行完毕。这样大家互相等待,所以就卡住了,所以我们的任务执行不了,而且syncMain---end也没有打印。

要是如果不在主线程中调用,而在其他线程中调用会如何呢?

4.5.2 在其他线程中调用同步执行 + 主队列

输出结果: 2018-02-23 20:44:19.377321+0800 YSC-GCD-demo[20083:5040347] currentThread—<NSThread: 0x600000272fc0>{number = 3, name = (null)} 2018-02-23 20:44:19.377494+0800 YSC-GCD-demo[20083:5040347] syncMain—begin 2018-02-23 20:44:21.384716+0800 YSC-GCD-demo[20083:5040132] 1—<NSThread: 0x60000006c900>{number = 1, name = main} 2018-02-23 20:44:23.386091+0800 YSC-GCD-demo[20083:5040132] 1—<NSThread: 0x60000006c900>{number = 1, name = main} 2018-02-23 20:44:25.387687+0800 YSC-GCD-demo[20083:5040132] 2—<NSThread: 0x60000006c900>{number = 1, name = main} 2018-02-23 20:44:27.388648+0800 YSC-GCD-demo[20083:5040132] 2—<NSThread: 0x60000006c900>{number = 1, name = main} 2018-02-23 20:44:29.390459+0800 YSC-GCD-demo[20083:5040132] 3—<NSThread: 0x60000006c900>{number = 1, name = main} 2018-02-23 20:44:31.391965+0800 YSC-GCD-demo[20083:5040132] 3—<NSThread: 0x60000006c900>{number = 1, name = main} 2018-02-23 20:44:31.392513+0800 YSC-GCD-demo[20083:5040347] syncMain—end

在其他线程中使用同步执行 + 主队列可看到:

为什么现在就不会卡住了呢? 因为syncMain 任务放到了其他线程里,而任务1、任务2、任务3都在追加到主队列中,这三个任务都会在主线程中执行。syncMain 任务在其他线程中执行到追加任务1到主队列中,因为主队列现在没有正在执行的任务,所以,会直接执行主队列的任务1,等任务1执行完毕,再接着执行任务2任务3。所以这里不会卡住线程。

4.6 异步执行 + 主队列

输出结果: 2018-02-23 20:45:49.981505+0800 YSC-GCD-demo[20111:5046708] currentThread—<NSThread: 0x60000006d440>{number = 1, name = main} 2018-02-23 20:45:49.981935+0800 YSC-GCD-demo[20111:5046708] asyncMain—begin 2018-02-23 20:45:49.982352+0800 YSC-GCD-demo[20111:5046708] asyncMain—end 2018-02-23 20:45:51.991096+0800 YSC-GCD-demo[20111:5046708] 1—<NSThread: 0x60000006d440>{number = 1, name = main} 2018-02-23 20:45:53.991959+0800 YSC-GCD-demo[20111:5046708] 1—<NSThread: 0x60000006d440>{number = 1, name = main} 2018-02-23 20:45:55.992937+0800 YSC-GCD-demo[20111:5046708] 2—<NSThread: 0x60000006d440>{number = 1, name = main} 2018-02-23 20:45:57.993649+0800 YSC-GCD-demo[20111:5046708] 2—<NSThread: 0x60000006d440>{number = 1, name = main} 2018-02-23 20:45:59.994928+0800 YSC-GCD-demo[20111:5046708] 3—<NSThread: 0x60000006d440>{number = 1, name = main} 2018-02-23 20:46:01.995589+0800 YSC-GCD-demo[20111:5046708] 3—<NSThread: 0x60000006d440>{number = 1, name = main}

在异步执行 + 主队列可以看到:

弄懂了难理解、绕来绕去的队列+任务之后,我们来学习一个简单的东西: 5. GCD 线程间的通信。

5. GCD 线程间的通信

在iOS开发过程中,我们一般在主线程里边进行UI刷新,例如:点击、滚动、拖拽等事件。我们通常把一些耗时的操作放在其他线程,比如说图片下载、文件上传等耗时操作。而当我们有时候在其他线程完成了耗时操作时,需要回到主线程,那么就用到了线程之间的通讯。

/**
 * 线程间通信
 */
- (void)communication {
    // 获取全局并发队列
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); 
    // 获取主队列
    dispatch_queue_t mainQueue = dispatch_get_main_queue(); 
    
    dispatch_async(queue, ^{
        // 异步追加任务
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
        
        // 回到主线程
        dispatch_async(mainQueue, ^{
            // 追加在主线程中执行的任务
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        });
    });
}

输出结果: 2018-02-23 20:47:03.462394+0800 YSC-GCD-demo[20154:5053282] 1—<NSThread: 0x600000271940>{number = 3, name = (null)} 2018-02-23 20:47:05.465912+0800 YSC-GCD-demo[20154:5053282] 1—<NSThread: 0x600000271940>{number = 3, name = (null)} 2018-02-23 20:47:07.466657+0800 YSC-GCD-demo[20154:5052953] 2—<NSThread: 0x60000007bf80>{number = 1, name = main}

可以看到在其他线程中先执行任务,执行完了之后回到主线程执行主线程的相应操作。

6. GCD 的其他方法

6.1 GCD 栅栏方法:dispatch_barrier_async

/**
 * 栅栏方法 dispatch_barrier_async
 */
- (void)barrier {
    dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_CONCURRENT);
    
    dispatch_async(queue, ^{
        // 追加任务1
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    dispatch_async(queue, ^{
        // 追加任务2
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    
    dispatch_barrier_async(queue, ^{
        // 追加任务 barrier
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"barrier---%@",[NSThread currentThread]);// 打印当前线程
        }
    });
    
    dispatch_async(queue, ^{
        // 追加任务3
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
    dispatch_async(queue, ^{
        // 追加任务4
        for (int i = 0; i < 2; ++i) {
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"4---%@",[NSThread currentThread]);      // 打印当前线程
        }
    });
}

输出结果: 2018-02-23 20:48:18.297745+0800 YSC-GCD-demo[20188:5059274] 1—<NSThread: 0x600000079d80>{number = 4, name = (null)} 2018-02-23 20:48:18.297745+0800 YSC-GCD-demo[20188:5059273] 2—<NSThread: 0x600000079e00>{number = 3, name = (null)} 2018-02-23 20:48:20.301139+0800 YSC-GCD-demo[20188:5059274] 1—<NSThread: 0x600000079d80>{number = 4, name = (null)} 2018-02-23 20:48:20.301139+0800 YSC-GCD-demo[20188:5059273] 2—<NSThread: 0x600000079e00>{number = 3, name = (null)} 2018-02-23 20:48:22.306290+0800 YSC-GCD-demo[20188:5059274] barrier—<NSThread: 0x600000079d80>{number = 4, name = (null)} 2018-02-23 20:48:24.311655+0800 YSC-GCD-demo[20188:5059274] barrier—<NSThread: 0x600000079d80>{number = 4, name = (null)} 2018-02-23 20:48:26.316943+0800 YSC-GCD-demo[20188:5059273] 4—<NSThread: 0x600000079e00>{number = 3, name = (null)} 2018-02-23 20:48:26.316956+0800 YSC-GCD-demo[20188:5059274] 3—<NSThread: 0x600000079d80>{number = 4, name = (null)} 2018-02-23 20:48:28.320660+0800 YSC-GCD-demo[20188:5059273] 4—<NSThread: 0x600000079e00>{number = 3, name = (null)} 2018-02-23 20:48:28.320649+0800 YSC-GCD-demo[20188:5059274] 3—<NSThread: 0x600000079d80>{number = 4, name = (null)}

在dispatch_barrier_async执行结果中可以看出:

6.2 GCD 延时执行方法:dispatch_after

我们经常会遇到这样的需求:在指定时间(例如3秒)之后执行某个任务。可以用 GCD 的dispatch_after函数来实现。 需要注意的是:dispatch_after函数并不是在指定时间之后才开始执行处理,而是在指定时间之后将任务追加到主队列中。严格来说,这个时间并不是绝对准确的,但想要大致延迟执行任务,dispatch_after函数是很有效的。

/**
 * 延时执行方法 dispatch_after
 */
- (void)after {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"asyncMain---begin");
    
    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
        // 2.0秒后异步追加任务代码到主队列,并开始执行
        NSLog(@"after---%@",[NSThread currentThread]);  // 打印当前线程
    });
}

输出结果: 2018-02-23 20:53:08.713784+0800 YSC-GCD-demo[20282:5080295] currentThread—<NSThread: 0x60000006ee00>{number = 1, name = main} 2018-02-23 20:53:08.713962+0800 YSC-GCD-demo[20282:5080295] asyncMain—begin 2018-02-23 20:53:10.714283+0800 YSC-GCD-demo[20282:5080295] after—<NSThread: 0x60000006ee00>{number = 1, name = main}

可以看出:在打印 asyncMain---begin 之后大约 2.0 秒的时间,打印了 after---<NSThread: 0x60000006ee00>{number = 1, name = main}

6.3 GCD 一次性代码(只执行一次):dispatch_once

6.4 GCD 快速迭代方法:dispatch_apply

如果是在串行队列中使用 dispatch_apply,那么就和 for 循环一样,按顺序同步执行。可这样就体现不出快速迭代的意义了。 我们可以利用并发队列进行异步执行。比如说遍历 0~5 这6个数字,for 循环的做法是每次取出一个元素,逐个遍历。dispatch_apply 可以 在多个线程中同时(异步)遍历多个数字。 还有一点,无论是在串行队列,还是异步队列中,dispatch_apply 都会等待全部任务执行完毕,这点就像是同步操作,也像是队列组中的 dispatch_group_wait方法。

/**
 * 快速迭代方法 dispatch_apply
 */
- (void)apply {
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    
    NSLog(@"apply---begin");
    dispatch_apply(6, queue, ^(size_t index) {
        NSLog(@"%zd---%@",index, [NSThread currentThread]);
    });
    NSLog(@"apply---end");
}

输出结果: 2018-02-23 22:03:18.475499+0800 YSC-GCD-demo[20470:5176805] apply—begin 2018-02-23 22:03:18.476672+0800 YSC-GCD-demo[20470:5177035] 1—<NSThread: 0x60000027b8c0>{number = 3, name = (null)} 2018-02-23 22:03:18.476693+0800 YSC-GCD-demo[20470:5176805] 0—<NSThread: 0x604000070640>{number = 1, name = main} 2018-02-23 22:03:18.476704+0800 YSC-GCD-demo[20470:5177037] 2—<NSThread: 0x604000276800>{number = 4, name = (null)} 2018-02-23 22:03:18.476735+0800 YSC-GCD-demo[20470:5177036] 3—<NSThread: 0x60000027b800>{number = 5, name = (null)} 2018-02-23 22:03:18.476867+0800 YSC-GCD-demo[20470:5177035] 4—<NSThread: 0x60000027b8c0>{number = 3, name = (null)} 2018-02-23 22:03:18.476867+0800 YSC-GCD-demo[20470:5176805] 5—<NSThread: 0x604000070640>{number = 1, name = main} 2018-02-23 22:03:18.477038+0800 YSC-GCD-demo[20470:5176805] apply—end

因为是在并发队列中异步执行任务,所以各个任务的执行时间长短不定,最后结束顺序也不定。但是apply—end一定在最后执行。这是因为dispatch_apply函数会等待全部任务执行完毕。

6.5 GCD 队列组:dispatch_group

有时候我们会有这样的需求:分别异步执行2个耗时任务,然后当2个耗时任务都执行完毕后再回到主线程执行任务。这时候我们可以用到 GCD 的队列组。

6.5.1 dispatch_group_notify

输出结果: 2018-02-23 22:05:03.790035+0800 YSC-GCD-demo[20494:5183349] currentThread—<NSThread: 0x604000072040>{number = 1, name = main} 2018-02-23 22:05:03.790237+0800 YSC-GCD-demo[20494:5183349] group—begin 2018-02-23 22:05:05.792721+0800 YSC-GCD-demo[20494:5183654] 1—<NSThread: 0x60000026f280>{number = 4, name = (null)} 2018-02-23 22:05:05.792725+0800 YSC-GCD-demo[20494:5183656] 2—<NSThread: 0x60000026f240>{number = 3, name = (null)} 2018-02-23 22:05:07.797408+0800 YSC-GCD-demo[20494:5183656] 2—<NSThread: 0x60000026f240>{number = 3, name = (null)} 2018-02-23 22:05:07.797408+0800 YSC-GCD-demo[20494:5183654] 1—<NSThread: 0x60000026f280>{number = 4, name = (null)} 2018-02-23 22:05:09.798717+0800 YSC-GCD-demo[20494:5183349] 3—<NSThread: 0x604000072040>{number = 1, name = main} 2018-02-23 22:05:11.799827+0800 YSC-GCD-demo[20494:5183349] 3—<NSThread: 0x604000072040>{number = 1, name = main} 2018-02-23 22:05:11.799977+0800 YSC-GCD-demo[20494:5183349] group—end

dispatch_group_notify相关代码运行输出结果可以看出: 当所有任务都执行完成之后,才执行dispatch_group_notify block 中的任务。

6.5.2 dispatch_group_wait

输出结果: 2018-02-23 22:10:16.939258+0800 YSC-GCD-demo[20538:5198871] currentThread—<NSThread: 0x600000066780>{number = 1, name = main} 2018-02-23 22:10:16.939455+0800 YSC-GCD-demo[20538:5198871] group—begin 2018-02-23 22:10:18.943862+0800 YSC-GCD-demo[20538:5199137] 2—<NSThread: 0x600000464b80>{number = 4, name = (null)} 2018-02-23 22:10:18.943861+0800 YSC-GCD-demo[20538:5199138] 1—<NSThread: 0x604000076640>{number = 3, name = (null)} 2018-02-23 22:10:20.947787+0800 YSC-GCD-demo[20538:5199137] 2—<NSThread: 0x600000464b80>{number = 4, name = (null)} 2018-02-23 22:10:20.947790+0800 YSC-GCD-demo[20538:5199138] 1—<NSThread: 0x604000076640>{number = 3, name = (null)} 2018-02-23 22:10:20.948134+0800 YSC-GCD-demo[20538:5198871] group—end

dispatch_group_wait相关代码运行输出结果可以看出: 当所有任务执行完成之后,才执行 dispatch_group_wait 之后的操作。但是,使用dispatch_group_wait 会阻塞当前线程。

6.5.3 dispatch_group_enter、dispatch_group_leave

输出结果: 2018-02-23 22:14:17.997667+0800 YSC-GCD-demo[20592:5214830] currentThread—<NSThread: 0x604000066600>{number = 1, name = main} 2018-02-23 22:14:17.997839+0800 YSC-GCD-demo[20592:5214830] group—begin 2018-02-23 22:14:20.000298+0800 YSC-GCD-demo[20592:5215094] 1—<NSThread: 0x600000277c80>{number = 4, name = (null)} 2018-02-23 22:14:20.000305+0800 YSC-GCD-demo[20592:5215095] 2—<NSThread: 0x600000277c40>{number = 3, name = (null)} 2018-02-23 22:14:22.001323+0800 YSC-GCD-demo[20592:5215094] 1—<NSThread: 0x600000277c80>{number = 4, name = (null)} 2018-02-23 22:14:22.001339+0800 YSC-GCD-demo[20592:5215095] 2—<NSThread: 0x600000277c40>{number = 3, name = (null)} 2018-02-23 22:14:24.002321+0800 YSC-GCD-demo[20592:5214830] 3—<NSThread: 0x604000066600>{number = 1, name = main} 2018-02-23 22:14:26.002852+0800 YSC-GCD-demo[20592:5214830] 3—<NSThread: 0x604000066600>{number = 1, name = main} 2018-02-23 22:14:26.003116+0800 YSC-GCD-demo[20592:5214830] group—end 从dispatch_group_enter、dispatch_group_leave相关代码运行结果中可以看出:当所有任务执行完成之后,才执行 dispatch_group_notify 中的任务。这里的dispatch_group_enter、dispatch_group_leave组合,其实等同于dispatch_group_async。

6.6 GCD 信号量:dispatch_semaphore

GCD 中的信号量是指 Dispatch Semaphore,是持有计数的信号。类似于过高速路收费站的栏杆。可以通过时,打开栏杆,不可以通过时,关闭栏杆。在 Dispatch Semaphore 中,使用计数来完成这个功能,计数为0时等待,不可通过。计数为1或大于1时,计数减1且不等待,可通过。 Dispatch Semaphore 提供了三个函数。

注意:信号量的使用前提是:想清楚你需要处理哪个线程等待(阻塞),又要哪个线程继续执行,然后使用信号量。

Dispatch Semaphore 在实际开发中主要用于:

6.6.1 Dispatch Semaphore 线程同步

我们在开发中,会遇到这样的需求:异步执行耗时任务,并使用异步执行的结果进行一些额外的操作。换句话说,相当于,将将异步执行任务转换为同步执行任务。比如说:AFNetworking 中 AFURLSessionManager.m 里面的 tasksForKeyPath: 方法。通过引入信号量的方式,等待异步执行任务结果,获取到 tasks,然后再返回该 tasks。

- (NSArray *)tasksForKeyPath:(NSString *)keyPath {
    __block NSArray *tasks = nil;
    dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
    [self.session getTasksWithCompletionHandler:^(NSArray *dataTasks, NSArray *uploadTasks, NSArray *downloadTasks) {
        if ([keyPath isEqualToString:NSStringFromSelector(@selector(dataTasks))]) {
            tasks = dataTasks;
        } else if ([keyPath isEqualToString:NSStringFromSelector(@selector(uploadTasks))]) {
            tasks = uploadTasks;
        } else if ([keyPath isEqualToString:NSStringFromSelector(@selector(downloadTasks))]) {
            tasks = downloadTasks;
        } else if ([keyPath isEqualToString:NSStringFromSelector(@selector(tasks))]) {
            tasks = [@[dataTasks, uploadTasks, downloadTasks] valueForKeyPath:@"@unionOfArrays.self"];
        }

        dispatch_semaphore_signal(semaphore);
    }];

    dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);

    return tasks;
}

下面,我们来利用 Dispatch Semaphore 实现线程同步,将异步执行任务转换为同步执行任务。

/**
 * semaphore 线程同步
 */
- (void)semaphoreSync {
    
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"semaphore---begin");
    
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
    
    __block int number = 0;
    dispatch_async(queue, ^{
        // 追加任务1
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        
        number = 100;
        
        dispatch_semaphore_signal(semaphore);
    });
    
    dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
    NSLog(@"semaphore---end,number = %zd",number);
}

输出结果: 2018-02-23 22:22:26.521665+0800 YSC-GCD-demo[20642:5246341] currentThread—<NSThread: 0x60400006bc80>{number = 1, name = main} 2018-02-23 22:22:26.521869+0800 YSC-GCD-demo[20642:5246341] semaphore—begin 2018-02-23 22:22:28.526841+0800 YSC-GCD-demo[20642:5246638] 1—<NSThread: 0x600000272300>{number = 3, name = (null)} 2018-02-23 22:22:28.527030+0800 YSC-GCD-demo[20642:5246341] semaphore—end,number = 100

从 Dispatch Semaphore 实现线程同步的代码可以看到:

6.6.2 Dispatch Semaphore 线程安全和线程同步(为线程加锁)

线程安全:如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。

若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作(更改变量),一般都需要考虑线程同步,否则的话就可能影响线程安全。

线程同步:可理解为线程 A 和 线程 B 一块配合,A 执行到一定程度时要依靠线程 B 的某个结果,于是停下来,示意 B 运行;B 依言执行,再将结果给 A;A 再继续操作。

举个简单例子就是:两个人在一起聊天。两个人不能同时说话,避免听不清(操作冲突)。等一个人说完(一个线程结束操作),另一个再说(另一个线程再开始操作)。

下面,我们模拟火车票售卖的方式,实现 NSThread 线程安全和解决线程同步问题。

场景:总共有50张火车票,有两个售卖火车票的窗口,一个是北京火车票售卖窗口,另一个是上海火车票售卖窗口。两个窗口同时售卖火车票,卖完为止。

6.6.2.1 非线程安全(不使用 semaphore)

先来看看不考虑线程安全的代码:

/**
 * 非线程安全:不使用 semaphore
 * 初始化火车票数量、卖票窗口(非线程安全)、并开始卖票
 */
- (void)initTicketStatusNotSave {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"semaphore---begin");
    
    self.ticketSurplusCount = 50;
    
    // queue1 代表北京火车票售卖窗口
    dispatch_queue_t queue1 = dispatch_queue_create("net.bujige.testQueue1", DISPATCH_QUEUE_SERIAL);
    // queue2 代表上海火车票售卖窗口
    dispatch_queue_t queue2 = dispatch_queue_create("net.bujige.testQueue2", DISPATCH_QUEUE_SERIAL);
    
    __weak typeof(self) weakSelf = self;
    dispatch_async(queue1, ^{
        [weakSelf saleTicketNotSafe];
    });
    
    dispatch_async(queue2, ^{
        [weakSelf saleTicketNotSafe];
    });
}

/**
 * 售卖火车票(非线程安全)
 */
- (void)saleTicketNotSafe {
    while (1) {
        
        if (self.ticketSurplusCount > 0) {  //如果还有票,继续售卖
            self.ticketSurplusCount--;
            NSLog(@"%@", [NSString stringWithFormat:@"剩余票数:%d 窗口:%@", self.ticketSurplusCount, [NSThread currentThread]]);
            [NSThread sleepForTimeInterval:0.2];
        } else { //如果已卖完,关闭售票窗口
            NSLog(@"所有火车票均已售完");
            break;
        }
        
    }
}

输出结果(部分): 2018-02-23 22:25:35.789072+0800 YSC-GCD-demo[20712:5258914] currentThread—<NSThread: 0x604000068880>{number = 1, name = main} 2018-02-23 22:25:35.789260+0800 YSC-GCD-demo[20712:5258914] semaphore—begin 2018-02-23 22:25:35.789641+0800 YSC-GCD-demo[20712:5259176] 剩余票数:48 窗口:<NSThread: 0x60000027db80>{number = 3, name = (null)} 2018-02-23 22:25:35.789646+0800 YSC-GCD-demo[20712:5259175] 剩余票数:49 窗口:<NSThread: 0x60000027e740>{number = 4, name = (null)} 2018-02-23 22:25:35.994113+0800 YSC-GCD-demo[20712:5259175] 剩余票数:47 窗口:<NSThread: 0x60000027e740>{number = 4, name = (null)} 2018-02-23 22:25:35.994129+0800 YSC-GCD-demo[20712:5259176] 剩余票数:46 窗口:<NSThread: 0x60000027db80>{number = 3, name = (null)} 2018-02-23 22:25:36.198993+0800 YSC-GCD-demo[20712:5259176] 剩余票数:45 窗口:<NSThread: 0x60000027db80>{number = 3, name = (null)} …

可以看到在不考虑线程安全,不使用 semaphore 的情况下,得到票数是错乱的,这样显然不符合我们的需求,所以我们需要考虑线程安全问题。

6.6.2.2 线程安全(使用 semaphore 加锁)

考虑线程安全的代码:

/**
 * 线程安全:使用 semaphore 加锁
 * 初始化火车票数量、卖票窗口(线程安全)、并开始卖票
 */
- (void)initTicketStatusSave {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"semaphore---begin");
    
    semaphoreLock = dispatch_semaphore_create(1);
    
    self.ticketSurplusCount = 50;
    
    // queue1 代表北京火车票售卖窗口
    dispatch_queue_t queue1 = dispatch_queue_create("net.bujige.testQueue1", DISPATCH_QUEUE_SERIAL);
    // queue2 代表上海火车票售卖窗口
    dispatch_queue_t queue2 = dispatch_queue_create("net.bujige.testQueue2", DISPATCH_QUEUE_SERIAL);
    
    __weak typeof(self) weakSelf = self;
    dispatch_async(queue1, ^{
        [weakSelf saleTicketSafe];
    });
    
    dispatch_async(queue2, ^{
        [weakSelf saleTicketSafe];
    });
}

/**
 * 售卖火车票(线程安全)
 */
- (void)saleTicketSafe {
    while (1) {
        // 相当于加锁
        dispatch_semaphore_wait(semaphoreLock, DISPATCH_TIME_FOREVER);
        
        if (self.ticketSurplusCount > 0) {  //如果还有票,继续售卖
            self.ticketSurplusCount--;
            NSLog(@"%@", [NSString stringWithFormat:@"剩余票数:%d 窗口:%@", self.ticketSurplusCount, [NSThread currentThread]]);
            [NSThread sleepForTimeInterval:0.2];
        } else { //如果已卖完,关闭售票窗口
            NSLog(@"所有火车票均已售完");
            
            // 相当于解锁
            dispatch_semaphore_signal(semaphoreLock);
            break;
        }
        
        // 相当于解锁
        dispatch_semaphore_signal(semaphoreLock);
    }
}

输出结果为: 2018-02-23 22:32:19.814232+0800 YSC-GCD-demo[20862:5290531] currentThread—<NSThread: 0x6000000783c0>{number = 1, name = main} 2018-02-23 22:32:19.814412+0800 YSC-GCD-demo[20862:5290531] semaphore—begin 2018-02-23 22:32:19.814837+0800 YSC-GCD-demo[20862:5290687] 剩余票数:49 窗口:<NSThread: 0x6040002709c0>{number = 3, name = (null)} 2018-02-23 22:32:20.017745+0800 YSC-GCD-demo[20862:5290689] 剩余票数:48 窗口:<NSThread: 0x60000046c640>{number = 4, name = (null)} 2018-02-23 22:32:20.222039+0800 YSC-GCD-demo[20862:5290687] 剩余票数:47 窗口:<NSThread: 0x6040002709c0>{number = 3, name = (null)} … 2018-02-23 22:32:29.024817+0800 YSC-GCD-demo[20862:5290689] 剩余票数:4 窗口:<NSThread: 0x60000046c640>{number = 4, name = (null)} 2018-02-23 22:32:29.230110+0800 YSC-GCD-demo[20862:5290687] 剩余票数:3 窗口:<NSThread: 0x6040002709c0>{number = 3, name = (null)} 2018-02-23 22:32:29.433615+0800 YSC-GCD-demo[20862:5290689] 剩余票数:2 窗口:<NSThread: 0x60000046c640>{number = 4, name = (null)} 2018-02-23 22:32:29.637572+0800 YSC-GCD-demo[20862:5290687] 剩余票数:1 窗口:<NSThread: 0x6040002709c0>{number = 3, name = (null)} 2018-02-23 22:32:29.840234+0800 YSC-GCD-demo[20862:5290689] 剩余票数:0 窗口:<NSThread: 0x60000046c640>{number = 4, name = (null)} 2018-02-23 22:32:30.044960+0800 YSC-GCD-demo[20862:5290687] 所有火车票均已售完 2018-02-23 22:32:30.045260+0800 YSC-GCD-demo[20862:5290689] 所有火车票均已售完

可以看出,在考虑了线程安全的情况下,使用 dispatch_semaphore 机制之后,得到的票数是正确的,没有出现混乱的情况。我们也就解决了多个线程同步的问题。